	© Bank of England 2005

Coding Standards for .NET using VB
Author

:
Paul Russell
Date

:
Nov 28th 2005

Reference
:
MFSD_DOCS_93496_1
Version
:
1
Revision
:
1
Status

:
Draft
Summary
:

The purpose of this document is to present a set of common rules and recommendations for developing applications using Microsoft VB.NET. By defining guidelines, an ISTD consistency of style, formatting and convention can be applied to each new project making development and post implementation support simpler. This document is based on MSD_DOCS_116811_2 (Coding Standards for .NET using C#).
AMENDMENTS HISTORY

	Version
	Revision
	Edited By
	Comment

	1
	0
	Paul Russell
	Initial Draft – based on MSD_DOCS_116811_2 (v2.0)

	1
	1
	Paul Russell
	Edited of examples for consistency.

Corrections for VB.NET 2005 content.

Changed text of hyperlinks to display friendly description instead of URL.

TABLE OF CONTENTS

41.
INTRODUCTION

42.
DOCUMENT CONVENTIONS

43.
NAMING CONVENTIONS

64.
APPLICATION OF NAMING CONVENTIONS

95.
CODE STYLE

106.
CODE COMMENTING

117.
CODING GUIDELINES

117.1
General

117.2
Variables and Types

117.3
Flow Control

127.4
Exception Handling

137.5
Object Composition

157.6
Events and Delegates

157.7
Threading

1. INTRODUCTION

The intention of this document is to describe a set of standards and guidelines that are to be used for new development projects using Microsoft VB.NET. These represent a combination of general best practice coding styles and the conventions used by Microsoft.

The goal of the standard is to make development and support of VB.NET systems simpler and more consistent across projects. The standard is not complete in the sense that all standards documents should evolve with experience and changes in the technology. It is not anticipated that these guidelines will be retrospectively applied to existing systems.

It is the responsibility of developers to understand, be familiar with and follow these standards. Any of the standards may be challenged at any time, but until such challenges have been made and resolved, developers should conform to the current standards. The process for challenging the standard or requesting new standards will be documented on the WebSig.
The standards contained in this document are based on, and should shadow any changes to, document MSD_DOCS_116811_2 (Coding Standards for .NET using C#).
2. DOCUMENT CONVENTIONS

The following conventions are used in throughout this document to indicate that rules should apply in a hard or softer way:

	Always
	This rule must be enforced

	Never
	This action must not happen

	Do Not
	This action must not happen

	Avoid
	It is desirable that the action does not happen although some exceptions to this principle may exist

	Try
	The rule should be attempted where possible

	Example
	Illustrates a rule

	Reason
	Explains a rule

Where a rule (or part of a rule) only applies to VB.NET 2005, this is indicated by a box surrounding the relevant section and the words "VB.NET 2005" in red to the left of the section.

3. NAMING CONVENTIONS

	3.1
	Always use Camel Case or Pascal Case. See section 4 for details where each model is appropriate.

	3.2
	Avoid all upper case names. Single lowercase words are acceptable.

	
	

	3.3
	Do not choose names that begin with numeric characters.

	3.4
	Use meaningful, descriptive and specific names.
Be consistent when choosing names e.g. Forename, FirstName.

	3.5
	Variables and properties should describe the entity not its attributes such as type or size.

	3.6
	Do not use Hungarian notation.
Example:
Dim customerName As String
'Good
Dim strCustomerName As String
'Bad!

	3.7
	Avoid using abbreviations unless the full name is excessively large.
Example:

Dim bankAccount As Account
'Good
Dim bnkct As Account

'Bad!
If abbreviations are used, apply the abbreviated name consistently.

	3.8
	Do not use reserved words as names.

	3.9
	Avoid conflicts with existing .NET framework namespaces or data types.

	3.10
	Try not to add superfluous prefixes or suffixes to identifiers.
Example:
Dim customerId As Integer
'Good
Dim ipCustomerId As Integer
'Bad!
Public Class Customer

'Good

…

End Class

Public Class CCustomer

'Bad!

…

End Class

Try to avoid naming constructs such as myCustomer, thisCustomer when dealing with instances of an object.
Example:
Public Sub PrintCustomer(BVal myCustomer As Customer)
'Not so good

…

End Sub

Public Sub PrintCustomer(ByVal customer As Customer)
'Better?

…

End Sub

	3.11
	Avoid including parent class names within a property name where possible.
Example:

Dim lastCustomer As String
lastCustomer = Customer.Name

'Good
lastCustomer = Customer.CustomerName
'Bad!

	3.12
	Try to prefix Boolean variables or properties with “Can”, “Has” or “Is”.

	3.13
	Append computation qualifiers to variable names like Average, Count.
Example:

Dim averageSalary As Long
'Good
Dim average As Long

'Bad!

	3.14
	Collection classes should generally be named using the plural of the constituent type name.

Example:
Public Class Customer

…

End Class

Public Class Customers

Inherits CollectionBase

…

End Class

Where the singular and plural forms are identical, postfix with the word collection.
Example:
Public Class TimeSeries

…

End Class

Public Class TimeSeriesCollection

Inherits CollectionBase

…

End Class

If in doubt, adopt a name that will be most clearly understood in the context of the business.

Example:
Dog and Dogs
(if the more common business use is Dogs)
Dog and Pack
(if the more common business use is Pack)

	3.15
	Always use a prefix when naming GUI controls. This makes it easier to locate items with intellisense.

	
	Checkbox
	chk
	Checked List Box
	Lst

	
	Combo Box
	cbo
	Context Menu
	ctx

	
	Control (generic)
	ctl
	Data Grid
	grd

	
	Domain up down
	dom
	Button
	btn

	
	Form
	frm
	Group Box
	grp

	
	Help Provider
	hlp
	Horizontal Scroll Bar
	hsb

	
	Image List or Image
	img
	Label
	Lbl

	
	Link Label
	lnk
	List Box
	lst

	
	List View
	lvw
	MDI child
	mdi

	
	Menu Item
	mnu
	Notify Icon
	nfi

	
	Numeric Up Down
	num
	Open File Dialog
	opn

	
	Panel
	pnl
	Progress Bar
	prg

	
	Radio Button
	opt
	Picture Box
	pic

	
	Rich Text Box
	rtf
	Save File Dialog
	sav

	
	Status Bar
	sbr
	Tab
	tab

	
	Text Box
	txt
	Timer
	tmr

	
	Tooltip
	tip
	Toolbar
	Tbr

	
	Track Bar
	trk
	TreeView
	tre

	
	Splitter
	spl
	Vertical Scroll Bar
	Vsb

4. APPLICATION OF NAMING CONVENTIONS

Naming conventions are applied to various project entities as shown below

	4.1
	Project File Name
	Pascal Case

Try to match the Assembly Name and Root Namespace.
Example:
Namespace BoE.CCBS.Events.Example

Assembly BoE.CCBS.Events.Example.dll

Project ….\BoE\CCBS\Events\Example.vbproj
Store the project file in a directory structure that corresponds to the namespace structure.

	4.2
	Source File Name

	Pascal Case

Always match the Class name with the file name.
Do not include multiple classes in a single file.

	4.3
	Resource File
	Pascal Case

Use a descriptive filename.

	4.4
	Namespace
	Pascal Case

Try to partially match the assembly name.

	4.5
	Class Name
	Pascal Case

Use a noun or noun phrase for the class name.
Try to add an appropriate suffix when sub-classing from another type.
Example:
Public Class ForecastItems

…

End Class

Public Class PostCodeValidationEventArgs

Inherits EventArgs

…

End Class

	4.6

	Structure Name
	Pascal Case

Use a noun or noun phrase for the class name.
Try to add an appropriate suffix when sub-classing from another type.
Example:
Public Structure ApplicationConfiguration

…

End Structure

	4.7
	Interfaces
	Pascal Case

Always prefixed with I.
Example:

Public Interface IPrintable

…

End Interface

	4.8
	Method
	Pascal Case

Try to use a verb or verb-object pair for the name.
Example:
Public Sub Execute()

…

End Sub

Public Sub ExecuteCommand()

…

End Sub

Public Function GetCustomerAddress() As String

…

End Sub

	4.9
	Property
	Pascal Case

Use a name that is representative of the entity being returned.

Do not prefix with Get or Set.
Example:
Public Property Name() As String

…

End Property

	4.10
	Field

(Public Protected or Friend)
	Pascal Case

Avoid if possible. Access via properties.

	4.11
	Field

(Private)

	Camel Case and prefixed with an underscore.
Example:
Private _name As String

	4.12
	Constant
	Pascal Case

	4.13
	Enumeration
	Pascal Case

Example:
Public Enum CaseStatus

Outstanding

InProgress

Referred

Closed

End Enum
Additional Note:
If bit masking is required, use the FlagsAttribute. Make the identifying name plural when using the FlagsAttribute.

	4.14
	Delegate or Event
	Treat as a field with the relevant access modifier.
Example:
Public Event LoadPlugin As EventHandler

	4.15
	Local Variable
	Camel Case

Avoid using single character variables except in for loops.
Avoid enumerating variable names like text1, text2, text3.

	4.16
	Parameter
	Camel Case

Example:
Public Sub Execute(ByVal commandText As String, _

ByVal interationCount As Integer)

…

End Sub

	4.17
	Namespace Construction
	Follow a standard pattern for namespace construction

BoE.
[Business Area/ Project/Functional Area].
[Application Name/Shared].
[Logical Layer/Technology].
[Sub Grouping]

Example:
BoE.CCIT.FoI.BusinessEntities

BoE.Markets.FiguresChief.WebUI

5. CODE STYLE

	5.1
	Always declare only one namespace per file (see 4.1).
Use the namespace convention described in 4.17.

	5.2
	Avoid including multiple top level classes in one file (see 4.1). Nested class declarations are permissible.

	5.3
	Use a tab indentation size of 4. This may be set up in Visual Studio.

	5.4
	Declare variables independently using a separate line for each.

	5.5
	Place namespace “Imports” statements at the top of the file.
Try to group “Imports” statements so that System namespaces appear above custom namespaces.
Example:
Imports System.Web
Imports System.Text
Imports BoE.CCBS.Events

	5.6
	Group internal class implementation as follows:
Member Variables

Nested Enumerations, Structures and Classes

Constructors and Destructors

Properties

Methods

	5.7
	Try to order declarations within the groups above (5.8) based upon their access modifier:
Public
Protected

Friend
Private
Only use other layouts where clarity would be improved as a result.

	5.8
	Segregate Interface implementation using #Region statements. Use comments on #End Region statements if this improves clarity.
Example:
#Region "Public Interface"

…

#End Region 'Public Interface

	5.9
	Append the folder name to the namespace for source files residing in sub folders.

	5.10
	Indent all code blocks contained within braces.

	5.11
	Use CRLF and tabs to separate and organise code.

	5.12
	Avoid declaring multiple attributes on the same line.

Example:
<Attribute1, _
Attribute2> _
Public Class Customer

…

End Class

	5.13
	Avoid superfluous formatting such as additional spaces to line up variable declarations.
Example:
Dim someVariable
As Integer
= 1

Dim anotherVariable
As StringBuilder
= New StringBuilder()
Dim yetAnotherVariable
As SomeVeryLongClassName
= New SomeVeryLongClassName()

6. CODE COMMENTING

	6.1
	Allow VSS to track changes to source files, when checking in source files use the VSS comments field to add a summary description of the changes and include any references to external documents or T-plan logs. Add detail comments in the code as described in the other points of this section.

	6.2
	Use ' or '''.

	6.3
	Add comments only where they describe functionality or process that is not obvious from looking at the code, or not covered in other documentation such as sequence diagrams.

	6.4
	Avoid flowerboxing comments (adding superfluous formatting characters).
Example:
'---
' Begin Save Process

'---

	6.5
	Try to use the comment keywords where appropriate to make your comments appear in the Visual Studio Task List. (See MSDN for more information about task list keywords).
Example:
'UNDONE: Save disabled, waiting for DB changes to be completed.

'HACK: Temporary fix until the Config reader is implemented.

'TODO: Exception logging needed here.

	6.6
	Always use VBCommenter comment blocks (''') for public, protected and friend declarations.
Avoid using comment blocks for private declarations unless required for documentation generation for example.

	6.7
	Always include <summary> comments.
Include <param>, <return> and <exception> where appropriate.

	6.8
	Always add CDATA tags to comments which have embedded code or markup to avoid encoding issues.
Example:
'''<example>

'''Add the following section to “appSettings”

'''<code><![CDATA[

''' <configuration>

''' <appSettings>

''' <add key=”ExampleSetting” value=”ExampleValue”>

''' </appSettings>

''' </configuration>

''']]></code>

'''</example>

7. CODING GUIDELINES

	7.1 General

	7.1.1
	Do not omit access modifiers. Explicitly declare all identifiers with the appropriate access modifier instead of allowing the default.

	7.1.2
	Avoid mutual references between assemblies.

	7.1.3
	Do not use the default assembly versioning scheme for COM Visible assemblies as this may cause GUIDs to change and break client interoperability. Increment AssemblyVersionAttribute manually in this case.

	7.1.4
	Set ComVisibleAttribute to False for all assemblies. Selectively enable the ComVisibleAttribute for individual classes.

	7.2 Variables and Types

	7.2.1
	Try to initialise variables where you declare them.
Example:
Dim counter As Integer = 0

	7.2.2
	Use the simplest data type required e.g. use an Integer over Long unless there is a requirement to store 64 bit numbers.

	7.2.3
	Try to use the CTS types in preference to the language type aliases to achieve standardisation between VB.Net and C#.
Example:
Dim countThis As System.Int32
'Good
Dim countThat As Integer

'Bad!

	7.2.4
	Avoid using inline numeric literals (magic numbers) use constant or an enumeration instead.

	7.2.5
	Avoid using inline string literals. Use constants, resources, registry or configuration file entries instead.

	7.2.6
	Only use constants for simple types.

	7.2.7
	Avoid boxing and unboxing value types.
Example:
Dim count As Integer = 1
Dim refCount As Object = count
'Implicit boxing operation
…
'Do some processing

Dim newCount As Integer = DirectCast(refCount, Integer) 'Explicit unbox operation

	7.2.8
	Prefer String.Format or StringBuilder over concatenation.

	7.2.9
	Do not compare strings to String.Empty.

Compare by using String.Length = 0.

	7.2.10
	Avoid hidden string allocations in loops. Use String.Compare() instead.
Reason:
Some string operations ToLower() involve temporary string allocations

	7.3 Flow Control

	7.3.1
	Avoid recursive methods where loops or nested loops would serve.

	7.3.2
	Avoid using For Each to iterate immutable value type collections.

	7.3.3
	Do not modify enumerated items within a For Each loop.

	7.3.4
	Avoid evaluating Boolean conditions against True or False.
Example:
'Avoid this Syntax

If IsValid = True Then

…

End If

'Use This Syntax

If IsValid Then

…

End If

	7.3.5
	Avoid complex compound Boolean evaluations.
Example:
'Avoid This Syntax

If (value > MedianValue) AndAlso Not (value = MeanValue) AndAlso (stateChanged) Then

…
End If

'Preferred Syntax

Dim isMedian As Boolean = (value > MedianValue)
Dim isMean As Boolean = Not (value = MeanValue)
Dim isStateChanged As Boolean = (stateChanged)

If (isMedian AndAlso Not isMean) AndAlso isStateChanged Then

…

End If

	7.3.6
	Use case statements (Select Case) for simple operations with parallel conditional processing or for operations with more than 3 possibilities.
Include an Else case when using a case statement.

	7.3.7

	Prefer polymorphism over case statements to encapsulate complex operations.

	7.4 Exception Handling

	7.4.1
	Do not use try catch blocks for controlling the flow of program execution.
Slightly Contrived Example:
' Always attempts an insert and if a violation occurs on the primary key
' try an update
Try

InsertCustomer(….)
Catch ex As PrimaryKeyViolationException

UpdateCustomer(….)
End Try
' More explicit decision point and flow control

Try

If customer.IsNew Then

InsertCustomer(…)

Else

UpdateCustomer(…)

End If
Catch ex As SqlException

…

End Try

	7.4.2
	Only catch exceptions that you are going to handle.

	7.4.3
	Use exception filters where possible.

	7.4.4
	Avoid re-throwing an exception. Allow it to bubble up the call stack instead.

	7.4.5
	If re-throwing an exception omit the exception argument from the throw statement so the original call stack is preserved.
Example:
'Correct – Preserves the call stack

Try

…
Catch ex As SqlException
 Throw
End Try

'Incorrect – Call stack is lost

Try

…
Catch ex As SqlException

Throw ex
End Try

	7.4.6
	When throwing a new exception always pass the inner exception in order to maintain the exception tree and inner call stack.
Additional Notes

· Where throwing an exception across a trust boundary (e.g. from a middle-tier to client) you may not want to pass the inner exception to avoid potentially sensitive information about the application being exposed. In such a case, the original exception should be logged somewhere first, to aid diagnostics.
· Serializing exception trees across boundaries may be slow, so be pragmatic.

	7.4.7
	Use validation to avoid exceptions. Program defensively.

	7.4.8
	Avoid custom exception classes in favour of existing exception classes.

	7.4.9

VB.NET

2005
	Where custom exceptions are necessary:
Derive from Exception not ApplicationException.
Override ToString() to provide serialization.
Override String Widening operator to provide serialization.

Implement the following constructor overloads:
Public Sub New()

…

End Sub

Public Sub New(ByVal message As String)

…

End Sub

Public Sub New(ByVal message As String, ByVal innerException As Exception)

…

End Sub

	7.4.10
	Always add an Application.ThreadException handler in windows forms applications to catch any unhandled exceptions and close-down gracefully after displaying a suitable message to the user. Otherwise, the default exception message is displayed and the application will terminate immediately.

	7.4.11
	Avoid swallowing exceptions. If this behaviour is desired, ensure comments are added to justify the choices made.

	7.5 Object Composition

	7.5.1
	Always declare types explicitly with a namespace to ensure global uniqueness.
e

	7.5.2
	Avoid declaring methods with more than 7 parameters. Consider refactoring or using an object or structure to pass information instead.

	7.5.3
	Avoid using the Shadows keyword to hide members of a derived type.

	7.5.4
	Only use the MyBase keyword to invoke the base class constructor or base implementation within an override.

	7.5.5
	Do not use the protected access modifier in classes declared as NotInheritable.

	7.5.6
	Validate enumerated type variables before consumption when converting from an Integer or name representation.
Example:
Dim statusCode As Integer = 21
If Enum.IsDefined(GetType(CaseStatus), statusCode) Then

…

End If

	7.5.7
	Avoid overriding Equals and the Equality operator without good reason. See 7.5.8 for some base guidelines.

	7.5.8
VB.NET 2005
	Guidelines for Implementing Equals and the Equality Operator (=):
· Consider overriding Equals() on a Structure or other value type.
· Implement the GetHashCode method whenever you implement the Equals method. This keeps Equals and GetHashCode synchronized.
· Override the Equals method any time you implement the IComparable Interface.
· Do not throw exceptions from the Equals or GetHashCode methods.

· Consider overriding the equality operator (=) on a Structure or other value type.

· Override the Equals method whenever you implement =, and make them do the same thing. This allows infrastructure code such as Hashtable and ArrayList, which use the Equals method, to behave the same way as user code written using =.

· You should consider implementing operator overloading for the equality (=), not equal (<>), less than (<), and greater than (>) operators when you implement IComparable.

· Do not throw exceptions from the equality operator (=).

Further Information:
Guidelines for Implementing Equals and the Equality Operator (==)

	VB.NET 2005
	Consider overriding the Widening operator when overriding ToString().
Further Information:

Operator Overloading in Visual Basic 2005

	7.5.19
	Avoid Parameter Arrays. Use overloading instead or use a structure or object to encapsulate the parameters you wish to pass.
Reasons:
· There’s no enforceable limit to the number of arguments received in this way

· If multiple types need to be supported the parameter array must be typed as object

· Can only have one parameter array (params) per method signature

· Can’t specify out parameters

· Object encapsulation is more extensible

	7.5.10
	Avoid public nested classes, structures and enums. They should only be used internally and therefore declared protected or private.
Some useful guidance on when to use nested classes:

Recommendations on Nested Classes in Components

	7.5.11
	Always implement IDisposable in classes that use external resources:
Public Sub Dispose()

Dispose(True)

GC.SuppressFinalize(Me)
End Sub

Protected Overloads Overridable Sub Dispose(disposing As Boolean)

If disposing Then

'Free managed objects

End If

'Free unmanaged objects

End Sub

	7.5.12
VB.NET 2005

	Wrap instantiation of IDisposable() objects with a using statement to ensure Dispose() is called automatically.
Example:
Using dbConnection As New SQLConnection(_connectionString)

…

End Using

	7.5.13
	Always call Close() and/or Dispose() on objects that offer it.

	7.6 Events and Delegates

	7.6.1
	Always check delegate instances for Nothing before invocation.

	7.6.2
	Use EventHandler and EventArgs for simple events.

	7.6.3
	Derive a custom EventArgs class to provide additional data.

	7.6.4
	Use CancelEventArgs to give control to the subscriber.

	7.7 Threading
Threading is a large and complex topic and solutions should be carefully designed and programmed to avoid deadlocks and race conditions. It is possible to get threading badly wrong leading to subtle bugs that are very difficult to track down.

	7.7.1
	Prefer the Monitor type rather than SyncLock for fine grained control.
Reason:
Supports defensive coding with TryEnter().

	7.7.2
	Do not lock value types.
Example:
Dim isDisposing As Boolean
SyncLock isDisposing 'BAD – Do Not lock value types (implicit boxing)

…

End SyncLock
Further Information:
Threading Tips: Never Lock a Value Type. Never Lock "This"

	7.7.3
	Do not lock the current instance despite the amount of documentation from Microsoft demonstrating this solution.
Example:
SyncLock Me 'BAD

…
End SyncLock

Do not lock on a type.
Example:
SyncLock GetType(Customer) 'BAD

…
End SyncLock

Lock on a private variable instead.

Example:

SyncLock GetType(somePrivateStaticObject) 'Good code!

…
End SyncLock

Reasons:
A full discussion of the issues with these techniques is discussed below.
A Special Dr. GUI: Don't Lock Type Objects!

	7.7.4
	If all you need to do is increment, decrement an Int32 or Int64 value, or set a 32-bit value (an Int32, Object or Single), use the Interlocked class.
Reason:
This won't block your thread. It's operations are special-cased by the CLR to be performed by an single CPU instruction, so they can't be pre-empted by another thread half-way through.

	7.7.5
	Synchronising Data for Multithreading.
A number of other synchronisation mechanisms are discussed in these articles:
Safe Thread Synchronization
Synchronizing Data for Multithreading

	93496-1
	Page 1 of 15

