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Context

Design parameters

Uncertain
variables

Operating requirements

Performance

Cost

Dassault-Aviation

Computer-Assisted
Engineering

Parameter sensitivity analysis
Parameter optimization

Response
surfaces

Environmental
parametersθ

Flow fields
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Case study – stationary Navier-Stokes solutions
depending on 11 CAD parameters

Subdomain of study for POD

= Eight 
CAD
parameters

= Three
CAD
parameters

Width, length, angle

� Total 11 CAD parameters
Each Parameter may vary in a small given interval

Inflow

[Audouze, De Vuyst 2008]
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Design of experiment (DoE) – Examples of FE solutions

Many kinds of solutions
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Parameterized discrete FE solutions

uh = uh(x,θ)

space vector parameter

Q : is it possible to get a cheap estimator of

θ �→ uh(., θ) ?

Parameter space :

θ ∈ [0, 1]p
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Proper Orthogonal Decomposition analysis

Velocity
POD modes

POM #1 POM #2

POM #3 POM #4

POM #5 POM #6

POM #7 POM #8

First eigenvalues
of the correlation
matrix

Rather good decreasing



8

Comparing a particular solution and its POD 
projection

ΠKuθ,h =
K∑

k=1

ak(θ)Ψ
k,h(x).uθ,h(x)

Using only K=5 

(5 POD modes) !



9

Plotting all the POD coefficients 
(DoE made of N=150 simulations) - Scatterplot

aik = ak(θ
i), i = 1, . . . , N

Mysterious
correlations ….



Design
and
Numerical Analysis
of some Reduced Order Models
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Basics on POD approximation

then

(standard PCA analysis)

Proper
truncation rank

Proposition. Let ε > 0 be a small error criterion. If K = K(ε) is chosen
such that

(H)
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1. POD-Galerkin approach on Laplace problem

Variational formulation of Laplace problem:

Snapshots:

POD

� POD-Galerkin

ROM !

ui,h = uθ
i,h

span
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Closed form ROM solution and error estimate

ũθ,h(x) =
K∑

k=1

(fθ,Ψk,h)Ψk,h(x)

= ak(θ)

If the H1

0
-inner product is used for the correlation matrix, then POD modes

are orthogonal in H1

0
and

Standard Galerkin error estimate :

Then under (H)-hypothesis, we get

ROM
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2. POD-propagator approach

• Now perform PCA on RHS rather than solutions

POD basis :

• Then build a dual basis such that

Laplace problem with Ψk,h

as RHS == mode propagator
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POD-propagator approach

Then the solution of the Laplace problem

is in closed form

Same error estimate as POD-Galerkin
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Comparison

noyesIntrusive 
approach

KNNB of required 
Laplace
solutions

yesyes Closed form 
ROM

POD-
propagator

POD-Galerkin

Important aspect in Engineering
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3. Weighted residual approach

Remember the Laplace problem :

Let be the FE “hat function”basis.

The residual is defined as :

Guess

Residual
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Idea

Find a = a(θ) solution of the minimization problem

Numerical complexity far less than a whole
Laplace problem FE solution

Non intrusive approach (is the FE code is able to return a residual from a guess)
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Non linear problems

• POD-Galerkin OK
• POD-Propagator KO (only for linear operators)

• Weighted residual approach OK
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4. Data driven approach (non intrusive) 
Parameter space interpolation

Looking for a ROM in the form

Ideally, âk(θ) should be

ak(θ) = (uθ,h,Ψk,h).
Not known
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By a design of computer experiment DoCE

�Requires high-dimensional interpolators/approximators.

Many candidates :

Low-order polynomials
Radial basis functions (RBF) [Wendland 2006]
Kriging approaches
Moving least squares (diffuse approximation)
SPH-like approximation, etc…

1. Generate a cloud of parameter N points θi In [0, 1]p (Latin Hypercube
Sampling, Sobol, etc.) ;

2. Compute N FE solutions ui,h = uθ
i,h ;

3. Compute aik = ak(θ
i) =

(
ui,h,Ψk,h

)
;

4. Then interpolate/approximate the ak in the parameter space.
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Case of RBF approximators

Kernel

RBF centers

Polynomial
lifting

Weights Scaling factors

Parameters identification :

Tykhonov-like
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Numerical experiment

Keller-Segel PDE system
(modeling skin patterns for living beings)

The system is known to have a rich variety of solutions
with respect to the different model coefficients.

Nonlinear terms
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Exemple of 1D steady-state solutions with periodical BC

Here, only γ is varying in an interval.

Parameter
bifurcation
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Proper orthogonal decomposition

The eight first
POD eigenmodes

Spectrum of the
corrlation matrix
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POD-RBF ROM solutions compared to FE ones

Slight loss of accuracy
towards the bifurcation
but globally rather good ROM

ZOOM

(using K=6)
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5. Partition-of-unity local-POD basis ROM

• POD approximation is sometimes reproached to 
use a basis only dedicated to a particular regime 
(that means for a small parameter-space region)   

Idea � Use different locally-optimal POD basis dedicated to a 
particular parameter region, then reconstruct the global approximation
in a smooth fashion.
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Partition-of-unity local-POD basis ROM
Parameter domain [0, 1]p

0
1

1
Practical construction of
a partition-of-unity:

Smooth positive compactly 
supported kernel

Then has the expected properties :
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Algorithm

1. First, build a local POD basis attached to the 
partition function nb m :

Weighted least squares

Local ROM : 
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Global reconstruction

• Then from the property: 

one can propose the following reconstruction:

in the form
Possible to use
again RBF approximators !
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Looking forward : challenges

• Multilevel ROM modeling for optimization process

• A posteriori estimators and DoCE enrichment at worst 
error locations for better approximation

• ROM for nonsmooth solutions (discontinuous solutions 
of hyperbolic equations for example)

• Extension/use in the uncertainty propagation community
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